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Abstract—We study channel-aware binary-decision fusion over
a shared flat-fading channel with multiple antennas at the Fusion
Center (FC). This paper considers the aid of a Reconfigurable
Intelligent Surface (RIS) to effectively convey the information
of the phenomenon of interest to the FC and foster energy-
efficient data analytics supporting the Internet of Things (IoT)
paradigm. We present the optimal rule and derive a (sub-optimal)
joint fusion rule & RIS design, representing an alternative
with reduced complexity and lower system knowledge required.
Simulation results for performance are presented showing the
benefit of RIS adoption even in a suboptimal case.

Index Terms—Decision Fusion, Internet of Things, Reconfig-
urable Intelligent Surface, Wireless Sensor Networks.

I. INTRODUCTION

The Internet of Things (IoT) envisages the pervasive deploy-
ment of tiny devices with sensing, processing, and communi-
cation capabilities to be used in everyday life and currently
represents a game-changing technology for the wireless com-
munications and sensing sector [1]. Wireless Sensor Networks
(WSNs) constitute the “sensing arm” of the IoT, with Dis-
tributed Detection (DD) representing a mature research topic
having multifold applications, ranging from cognitive radio
systems [2] to industrial contexts [3].

From a chronological standpoint, we can categorize DD
literature into three “waves”. The first wave of DD (coinciding
with its inception) dates back to the seminal work of Tenney
and Sandell [4], and was nurtured by the milestone contri-
butions from [5]–[7]. In “earlier days”, single- or multi-bit
quantization of measurements/likelihoods was assumed, and
the design of local detectors and/or fusion rules investigated.
In these works, however, decoupled (or noise-free) reporting
channels was the implicit assumption. Then, the second wave
of DD ignited in the early 2000s along with the widespread
diffusion of WSNs. This wave of research effort centered
around the use of channel-aware techniques for design of
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fusion rules [8] and the investigation of diverse reporting pro-
tocols, e.g. type/time/frequency/code-based [9], [10] or inter-
fering [11]. Further efforts toward performance improvement
implied power-allocation [12], censoring schemes [13] and
sensor subset selection [14]. In recent years, the third wave of
DD has attempted to capitalize novel concepts, such as green
(near-zero-energy) sensors (e.g. exploiting backscattering [15]
and energy-harvesting [16]) and the use of mmWave sen-
sors [17] and massive MIMO [18], [19] to reduce the energy
expenditure of the WSN by achieving desired performance.
Still, the appealing use of flexible Reconfigurable Intelligent
Surfaces (RISs) [20], [21] appears unexplored in DD.

Hence, the main contributions of this work are the follow-
ing. We study DD with sensors transmitting their decisions
to a Fusion Center (FC) over a multiple-access channel. The
FC is equipped with a receive array (hence we consider a
distributed MIMO setup [12], [22]) and information alignment
of sensors’ contributions is achieved via the assistance of
suitably-designed RIS [20], [21]. To overcome the infeasibility
of the Log-likelihood Ratio (LLR) and the consequent diffi-
culty in obtaining a RIS design (due to unavailability of LLR
theoretical performance) in such context, we devise a joint
fusion rule & RIS design based on the “Ideal Sensors” (IS)
assumption [8], [18], [22]. The proposed design, albeit relying
on a simplistic rationale, provides an effective (while sensor-
performance-agnostic) joint fusion rule & RIS design. The
resulting optimization is elegantly solved via Alternating Op-
timization (AO) and Majorization-Minimization (MM) [23].

Focusing on the use of smart surfaces for aiding decentral-
ized inference, the closest works to ours are [24], [25]. Still,
while the former tackles over-the-air-computation of generic
nomographic functions [24] (i.e. not suited for dependent and
non-zero-mean decisions), the latter tackles distributed estima-
tion with a single-antenna FC with secrecy objectives [25].

The rest of the paper is organized as follows. Sec. II
describes the system model considered, whereas Sec. III intro-
duces the proposed joint fusion & RIS design. Our approach
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is then evaluated via simulations in Sec. IV. Sec. V ends the
paper with some pointers to research prospects.1

II. SYSTEM MODEL

We consider a distributed binary test of hypotheses, where
K sensors are used to discern between the hypotheses in
the set H ≜ {H0,H1} (e.g. H0/H1 may represent the
absence/presence of a phenomenon of interest). The kth sen-
sor, k ∈ K ≜ {1, 2, . . . ,K}, takes a binary local decision
ξk ∈ H about the observed phenomenon on the basis of its
own measurements. Here we do not make any conditional
(given Hi ∈ H) mutual independence assumption on ξk.
Each decision ξk is mapped into xk ∈ X = {−1,+1},
namely a Binary Phase-Shift Keying (BPSK) modulation:
without loss of generality we assume that bk = Hi maps
into xk = (2i − 1), i ∈ {0, 1}. The quality of the WSN
is characterized by the conditional joint pmfs P (x|Hi). Also,
we denote PD,k ≜ P (xk = 1|H1) and PF,k ≜ P (xk = 1|H0)
the probability of detection and false alarm of the kth sensor,
respectively (we reasonably assume PD,k ≥ PF,k).

Sensors communicate with a FC equipped with N antennas
over a wireless flat-fading multiple access channel [22] and
are assisted by a RIS with M elements. Let Hd ∈ CN×K

(hd
k ∈ CN being the kth sensor contribution), Hr ∈ CM×K

(hr
k ∈ CM being the kth sensor contribution) and G ∈ CN×M

be the equivalent channels from the WSN to the FC, from the
WSN to the RIS, and from the RIS to the FC, respectively.
The received signal vector y ∈ CN at the FC is:

y =
(
GΘHr +Hd

)
Dα x+w = He(Θ)Dα x+w (1)

where x ∈ XK and w ∼ NC(0N , σ2
wIN ) are the trans-

mitted signal and noise vectors, respectively. In Eq. (1), the
diagonal matrix Θ = diag(ejφ1 , . . . , ejφM ), 0 ≤ φm <
2π, ∀m = 1, . . .M , collects the RIS phase-shifts. Con-
versely, the matrix Dα = diag(α1, . . . , αK), with αk ∈
R+, ∀k ∈ K, accounts for unequal transmit energy. Last,
we have defined He(Θ) ≜

(
GΘHr +Hd

)
for compact-

ness. It can be shown that y|Hi has the following statisti-
cal 2nd-order characterization: E{y|Hi} = He(Θ)Dα ρi,
Cov(y|Hi) = He(Θ)Dα Cov (x|Hi) Dα He(Θ)† + σ2

w IN
and PCov(y|Hi) = He(Θ)Dα Cov(x|Hi)Dα He(Θ)T ,
where ρ1 ≜ [PD,1 · · ·PD,K ]T and ρ0 ≜ [PF,1 · · ·PF,K ]T ,
respectively.

1Notation – vectors (resp. matrices) are denoted with lower-case (resp.
upper-case) bold letters; E{·}, var{·}, Cov(·), PCov(·) (·)T , (·)†, ℜ (·),
∠(·) and ∥·∥ denote expectation, variance, covariance, pseudocovariance,
transpose, conjugate transpose, real part, phase, and Euclidean norm operators,
respectively; ON×K (resp. IN ) denotes the N × K (resp. N × N ) null
(resp. identity) matrix; 0N (resp. 1N ) denotes the null (resp. ones) vector of
length N ; diag(a) denotes the diagonal matrix with a on the main diagonal;
a (resp. A) denotes the augmented vector (resp. matrix) of a (resp. A),
that is a ≜

[
aT a† ]T (resp. A ≜

[
AT A† ]T ); Pr(·) and p(·)

denote probability mass functions (pmfs) and probability density functions
(pdfs), while Pr(·|·) and p(·|·) their corresponding conditional counterparts;
NC(µ,Σ) denotes a proper complex normal distribution with mean vector
µ and covariance matrix Σ; the symbol ∼ means “distributed as”.

III. JOINT FUSION RULE AND RIS DESIGN

Optimal fusion rule: the optimal test [26] for this problem is{
Λopt ≜ ln

[
p(y|H1)

p(y|H0)

]} Ĥ=H1

≷
Ĥ=H0

γ (2)

where Ĥ, Λopt and γ denote the estimated hypothesis, the LLR
and the threshold which the LLR is compared to. The latter
(γ) is usually determined to assure a fixed system false-alarm
rate or to minimize the probability of error [26]. Exploiting the
independence2 of y from Hi, given x, an explicit expression
of the LLR in Eq. (2) is obtained as

Λopt = ln

[∑
x∈XK p(y|x)P (x|H1)∑
x∈XK p(y|x)P (x|H0)

]
(3)

= ln

∑
x∈XK exp

(
−∥y−He(Θ)Dαx∥2

σ2
w

)
P (x|H1)∑

x∈XK exp
(
−∥y−He(Θ)Dαx∥2

σ2
w

)
P (x|H0)


Unfortunately, the LLR requires a computational complexity
which scales as O(2K) and also does not lend itself to a
tractable analysis of its closed-form performance. The latter
observation still applies even in the case a deflection measure
is taken as the relevant evaluation metric:

Di (Λ) ≜ (E{Λ|H1} − E{Λ|H0})2 / var{Λ|Hi} (4)

where D0(·) and D1(·) correspond to the normal [27] and
modified [28] deflections, respectively. Accordingly, we pursue
a simplified approach described in what follows.
Joint Ideal Sensors (IS) Rule & RIS design: first of all,
deflection metrics represent a flexible design tool in case the
fusion rule is constrained to be a Widely-Linear (WL) fusion
statistic Λwl = a†y, namely:

Di(Λwl) ≜

(
a† (E{y|H1} − E{y|H0})

)2
a†Cov(y|H1)a

(5)

Indeed, WL fusion rules have been reported to provide ap-
pealing performance in similar WSN contexts (e.g. [18]).
Secondly, we observe that the fusion rule design in Eq. (3)
can be further simplified under the IS assumption [18],
[29], i.e. P (x = 1K |H1) = P (x = −1K |H0) = 1.
Indeed, 2nd-order characterization of y|Hi simplifies as:
E{y|Hi} = He(Θ)Dα (2i − 1)1K , Cov(y|Hi) = σ2

w IN
and PCov(y|Hi) = ON×N . Accordingly, the proposed design
requires lower system knowledge, as WSN (local) decision
performance is not needed. Also, we remark that the IS
assumption is only leveraged at the design stage.

Based on IS assumption, both the deflection measures
simplify into the unique metric [18]:

D (a,Θ) = (4 / σ2
w)

(
a† [He(Θ)Dα 1k]

)2
/
(
a†a

)
(6)

The goal of this work is to maximize the deflection in Eq. (6)
(i.e. under the IS assumption) by jointly optimizing the WL

2Indeed the directed triple formed by hypothesis, the transmitted-signal
vector and the received-signal vector satisfies the Markov property.
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vector determining the fusion rule a and the phase shift matrix
Θ. Hence, the resulting optimization is formulated as:

P1 :
maximize

a ,Θ

(a†[He(Θ)Dα 1k])
2

a†a

subject to
∥a∥ = 1

Θ = diag(ejφ1 , . . . , ejφM )

(7)

Note that, different from channel-aware DD without RISs, in
the second constraint of optimization problem P1, each diag-
onal element in the phase shift matrix has unit modulus. This
non-convex constraint together with the non-convex objective
function makes P1 a non-convex problem.

In this paper, we resort to AO approach for solving P1

efficiently. Specifically, we describe an optimization method
based on AO which alternates between maximization of a
and Θ. AO (being a special case of block-coordinate descent)
has been shown to be a widely applicable and empirically
successful approach in many applications, and typically leads
to a sub-optimal solution for nonconvex problems.
Step (A) - Fusion rule design: we first focus on the opti-
mization of the WL vector a for a fixed phase-shift matrix
Θfix. Accordingly, the WL vector design problem is given by:

P2 : maximize
∥a∥=1

(
a† [He(Θfix)Dα 1k]

)2
/
(
a†a

)
(8)

The optimal value of a in P2 is the vector attaining the
equality in the Cauchy-Schwarz inequality [18]:

a⋆(Θfix) = He(Θfix)Dα 1k / ∥He(Θfix)Dα 1k∥ (9)

Step (B) - RIS design: we then focus on the optimization
of the phase-shift matrix Θ for a fixed WL vector afix. The
corresponding optimization problem is given by:

P3 :
maximize

Θ

(a†
fix[H

e(Θ)Dα 1k])
2

a†
fixafix

subject to Θ = diag(ejφ1 , . . . , ejφM )
(10)

After some manipulations, the IS-based deflection in (6) can be
recast as follows (isolating dependence on RIS phase-shifts):

D (afix,Θ) = (4 / σ2
w) θ̃

†
Ξ (afix) θ̃ (11)

where θ̃ ≜
[
ejφ1 · · · ejφM 1

]T
and

Ξ (afix) ≜ ∥afix∥
−2 (

N †afix

) (
N †afix

)†
(12)

In the latter term the matrix N ∈ C2N×2(M+1) has the
following explicit expression:

N ≜

[(
Nr nd

)
ON×(M+1)

ON×(M+1)

(
Nr nd

)∗] (13)

where Nr ≜ Gdiag(Hr Dα1K) and nd ≜
(
Hd Dα 1K

)
(hence Nr ∈ CN×M and nd ∈ CN×1). Therefore, optimiza-
tion problem P3 can be recast as:

P4 :
maximize

θ̃
g(θ̃) = θ̃

†
Ξ (afix) θ̃

subject to {|θm| = 1}Mm=1 , θM+1 = 1
(14)

Due to modulus constraint of RIS elements, the problem is
non-convex. To avoid cumbersome optimizations at the FC,
we propose to solve P4 via the MM technique3 [23].

In particular, assuming the value of θ̃ in the ℓth iteration
of the AO is denoted as θ̃⋆

(ℓ), we construct a lower bound
on the objective function g(θ̃) that touches the objective
function at point θ̃, denoted as f(θ̃|θ̃⋆

(ℓ)). We adopt this lower
bound as a surrogate objective function, and the maximizer of
this surrogate objective function is then taken as the value
of θ̃ in the next iteration of the AO, i.e., θ̃⋆

(ℓ+1). In this
way, the objective value is monotonically increasing from one
iteration to the next, i.e., g(θ̃⋆

(ℓ+1)) ≥ g(θ̃⋆
(ℓ)) and we have

first-order optimality. The key to the success of MM lies in
constructing a surrogate objective function f(θ̃|θ̃⋆

(ℓ)) for which
the maximizer θ̃⋆

(ℓ+1) is easy to find. For the phase-shift matrix
optimization problem P4, a surrogate objective function is
derived in what follows.

Since the objective function g(θ̃) is convex in θ̃, it is
minorized by its first-order approximation:

g(θ̃) = θ̃
†
Ξ (afix) θ̃ ≥

f(θ̃|θ̃⋆
(ℓ)) = ℜ

{(
θ̃
⋆

(ℓ)

)†
Ξ (afix) θ̃

}
+ const (15)

where “const” refers to terms not depending on θ̃. Accord-
ingly, the phase-shift optimization problem in each iteration
of the AO can be obtained as:

P5 : θ̃⋆
(ℓ+1) = argmax

|θm|=1, θM=1

ℜ
{(

θ̃
⋆

(ℓ)

)†
Ξ (afix) θ̃

}
(16)

Remarkably, the optimal solution of P5 is in closed-form:

∠θ̃
⋆

(ℓ+1) = ∠Ξ (afix) θ̃
⋆

(ℓ) (17)

The resulting design then alternates between the closed-form
solutions in Eqs. (9) [Step (A)] and (17) [Step (B)]. Accord-
ingly, the IS-based deflection in Eq. (6) is guaranteed to mono-
tonically increase (by means of the alternating procedure) and
converge to a local optimum. In this work, we select the initial
point θ̃⋆

(0) based on uniformly-generated random phase-shifts.
The procedure, summarized in Algo. 1, is provably convergent
in the value of the objective, since the objective function
monotonically increases with the iteration number.

Algorithm 1 IS-based Joint Fusion Rule & RIS design via
AO with MM.

1: Construct an initial θ̃⋆
(0) and set ℓ = 0;

2: repeat
3: Fix θ̃⋆

(ℓ) and optimize a according to Eq. (9);
4: Fix a and optimize θ̃⋆

(ℓ+1) via Eqs. (12) and (17);
5: Set ℓ←− ℓ+ 1;
6: until convergence

The computational complexity of the proposed IS-based
joint design is thus O(Niter (Cfus+Cris)), where Niter denotes

3Actually, we exploit the “dual” minorization-maximization formulation.
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Fig. 1. PD0
vs PF0

of the considered rule/RIS configurations. WSN with
K = 10 sensors, (PD,k, PF,k) = (0.5, 0.05), k ∈ K. N = 4 antennas at
the FC, RIS with M = 20 elements; noise variance σ2

w = −80 dBm.

the number of (complete) iterations of the AO procedure, while
Cfus (resp. Cris) denotes the cost of the WL vector fusion
(RIS phase-shift matrix) design step. It can be shown that the
former cost equals O(M+MN+N) while the latter requires
a complexity O((M + 1)2 +MN +N).

IV. SIMULATION RESULTS

We consider a WSN made of K = 10 sensors with equal
transmit energy (αk = 1), whose local decisions on the phe-
nomenon of interest are conditionally independent and iden-
tically distributed (i.i.d.), i.e., P (x|Hi) =

∏K
k=1 P (xk|Hi),

(PD,k, PF,k) ≜ (0.5, 0.05), k ∈ K, as adopted in [8].
In the following simulations, we generate the small-scale

fading coefficients according to Rayleigh channels. Differ-
ently, the path loss model considered is µ (d/d0)

−ν where
µ = −30 dB is the path loss at the reference distance of 1 m.
The path loss exponent ν is set to 2 for both WSN-to-RIS and
RIS-to-FC links, and 4 for WSN-FC links. The locations of the
WSN, RIS and FC are as follows: the sensors are uniformly
distributed at random in the square [0, 40]× [0, 40]m2, while
the RIS and the FC are located at [60, 20]m and [65, 25]m,
respectively. The noise variance σ2

w is set to −80 dBm.
Herein, we analyze the performance of the fusion rules in

terms of the probabilities of false alarm PF0 ≜ Pr{Λ > γ|H0}
and detection PD0

≜ Pr{Λ > γ|H1}. As a relevant bench-
mark to assess detection degradation due to the interfering
distributed MIMO channel (and the benefit arising from the
RIS aid), we also report the “observation upper bound”, i.e.
the performance of the optimal decision fusion rule in an ideal
channel condition, given by P ob

D0
=

∑K
i=ν

(
K
i

)
(PD)i (1 −

PD)K−i and P ob
F0

=
∑K

i=ν

(
K
i

)
(PF )

i (1 − PF )
K−i, where

ν ∈ {0, . . .K} is a discrete threshold.
In Fig. 1 we show the receiver operating characteristic (i.e.

PD0
vs PF0

), for the presented rules in a WSN with N = 4
antennas at the FC, under a channel with M = 20 RIS
elements. By looking at the performance, the proposed joint

10 20 30 40 50 60

0.4

0.5

0.6

0.7

0.8

0.9

1

Fig. 2. PD0
vs M (with PF0

= 0.01) of the considered rule/RIS
configurations. WSN with K = 10 sensors, (PD,k, PF,k) = (0.5, 0.05),
k ∈ K. N = 4, noise variance σ2

w = −80 dBm.

design (denoted with ” ”) is able to significantly improve the
performance with respect to an IS-based fusion rule not aided
by a RIS [18], [22] (denoted with ”□”). In the considered
scenario, the joint design is also able to outperform the LLR
without a RIS (denoted with ”∇”). Remarkably, the IS-based
RIS design is also generally beneficial for the detection
capabilities of the WSN, as shown by the improvement of
the LLR when the proposed IS-based design is leveraged to
set the phase-shifts of the RIS (denoted with ” ”).

Then, Fig. 2 we report the PD0
(for a fixed false-alarm

rate, set to PF0
= 0.01) versus the number of RIS elements

(M ) to investigate the improvement achievable considering a
larger RIS. By looking at the trend with M , the IS design
on the RIS improves the detection performance as the number
of elements increases. Still, while for joint IS design, there
is a settlement of performance achieved at M ≈ 40, for the
LLR the saturation is achieved at M ≈ 20. This is mainly
due to the LLR hitting the maximum achievable performance
represented by the observation bound.

V. CONCLUSIONS AND FUTURE DIRECTIONS

This work is a first attempt in the use of RIS for aiding
channel-aware decision fusion in a distributed MIMO setup. To
circumvent the computational complexity and the unavailabil-
ity of closed-form performance for the LLR, we have devised a
sensor-agnostic joint RIS & fusion rule design based on the IS
assumption. The resulting non-convex optimization has been
tackled via AO and MM frameworks, providing a simple ping-
pong closed-form optimization procedure. Simulation results
have shown the appeal in the use of a RIS to aid WSNs in
performing DD task (even in the case of sub-optimal design),
similarly to analogous decentralized inference scenarios (e.g.
estimation). Future directions will deal with: more sophisti-
cated joint RIS & fusion rule design; exploitation of multiple
RISs; design based on practical RIS constraints (e.g. discrete
shift alphabets); imperfect channel state information.
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